Bilangan adalah suatu konsep dalam matematika yang dipergunakan untuk melakukan pencacahan dan pengukuran. Simbol atau lambang yang dipakai untuk mewakili sebuah bilangan dinamakan sebagai angka atau lambang bilangan. Konsep bilangan dalam matematika selama bertahun-tahun lamanya sudah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.
Bilangan Asli
Bilangan Asli merupakan bilangan yang dimulai dari angka satu (1) dan bertanbah satu. Pada garis deret ukur bilangan matematika yang di mulai dari angka satu bertambah satu ke arah kanan (1,2,3,4,5,...).
Bilangan prima
Bilangan prima merupakan bilangan yang dapat dibagi dengan angka satu dan bilangan itu sendiri (2,3,5,7,11….)
Bilangan Bulat
Bilangan bulat yaitu terdiri dari bilangan cacah (0, 1, 2, ...) dan negatifnya (-1, -2, -3, ...; -0 adalah sama dengan 0 dan tidak dimasukkan lagi secara terpisah). Bilangan bulat bisa dituliskan tanpa komponen desimal atau pecahan.
Bilangan Positif
Bilangan Positif adalah bilangan yang berada pada deret ukur garis bilangan yang dimulai dari Nol ke arah kanan tanpa batas {0,1,2,3,...} juga meliputi angka dibelakang koma {(0,1), (0,2), (0,3), ...} dan seterusnya.
Bilangan Negatif
Bilangan Negatif adalah negasi atau kebalikan dari bilangan positif, yaitu bilangan yang berada pada deret ukur garis bilangan yang dimulai dari -1 ke arah kiri tanpa batas {-1, -2, -3, -4, ...} juga meliputi angka di belakang koma {(-1,0), (-1,1), (-1,2), (-1,3), ...} dan seterusnya.
Bilangan Riil
Pada matematika, bilangan riil atau bilangan real menyatakan bilangan yang bisa dituliskan dalam bentuk desimal, seperti 2,4871773339… atau 3.25678. Bilangan real meliputi bilangan rasional, seperti 42 dan −23/129, dan bilangan irasional, seperti π dan sqrt2. Bilangan rasional direpresentasikan dalam bentuk desimal berakhir, sedangkan bilangan irasional memiliki representasi desimal tidak berakhir namun berulang. Bilangan riil juga dapat direpresentasikan sebagai salah satu titik dalam garis bilangan.
Bilangan Rasional
Bilangan rasional adalah suatu bilangan yang dapat dinyatakan sebagai a/b dimana a, b bilangan bulat dan b tidak sama dengan 0 dimana batasan dari bilangan rasional adalah mulai dari selanga (-∞, ∞). Pada bilangan rasional berarti teradapat di dalamnya sudah mencakup bilangan-bilangan lain seperti: bilangan bulat, bilangan asli, bilangan cacah, bilangan prima dan bilangan-bilangan lain yang menjadi subset dari bilangan rasional.
Bilangan Irasional
Bilangan irasional merupakan bilangan riil yang tidak dapat dibagi (hasil baginya tidak pernah berhenti). Dalam hal ini, bilangan irasional tidak bisa dinyatakan sebagai a/b, dengan a dan b sebagai bilangan bulat dan b tidak sama dengan nol. Jadi bilangan irasional bukan merupakan bilangan rasional atau kebalikan dari bilangan rasional.
Bilangan Imajiner
Definisinya, bilangan yang dinyatakan dengan "i" dan di defenisikan sebagai i = -1 atau i = akar -1 . akar -2 adalah bilangan irasional, tetapi akan -2 merupakan bilangan imajiner karena tidak ada bilangan riil jika di kuadratkan menghasilkan -2.
Bilangan Kompleks
Bilangan kompleks adalah bilangan yang berbentuk a+bi dimana a dan b adalah bilangn riil dan i adalah bilangan imajiner.
Bilangan Asli
Bilangan Asli merupakan bilangan yang dimulai dari angka satu (1) dan bertanbah satu. Pada garis deret ukur bilangan matematika yang di mulai dari angka satu bertambah satu ke arah kanan (1,2,3,4,5,...).
Bilangan prima
Bilangan prima merupakan bilangan yang dapat dibagi dengan angka satu dan bilangan itu sendiri (2,3,5,7,11….)
Bilangan Bulat
Bilangan bulat yaitu terdiri dari bilangan cacah (0, 1, 2, ...) dan negatifnya (-1, -2, -3, ...; -0 adalah sama dengan 0 dan tidak dimasukkan lagi secara terpisah). Bilangan bulat bisa dituliskan tanpa komponen desimal atau pecahan.
Bilangan Positif
Bilangan Positif adalah bilangan yang berada pada deret ukur garis bilangan yang dimulai dari Nol ke arah kanan tanpa batas {0,1,2,3,...} juga meliputi angka dibelakang koma {(0,1), (0,2), (0,3), ...} dan seterusnya.
Bilangan Negatif
Bilangan Negatif adalah negasi atau kebalikan dari bilangan positif, yaitu bilangan yang berada pada deret ukur garis bilangan yang dimulai dari -1 ke arah kiri tanpa batas {-1, -2, -3, -4, ...} juga meliputi angka di belakang koma {(-1,0), (-1,1), (-1,2), (-1,3), ...} dan seterusnya.
Bilangan Riil
Pada matematika, bilangan riil atau bilangan real menyatakan bilangan yang bisa dituliskan dalam bentuk desimal, seperti 2,4871773339… atau 3.25678. Bilangan real meliputi bilangan rasional, seperti 42 dan −23/129, dan bilangan irasional, seperti π dan sqrt2. Bilangan rasional direpresentasikan dalam bentuk desimal berakhir, sedangkan bilangan irasional memiliki representasi desimal tidak berakhir namun berulang. Bilangan riil juga dapat direpresentasikan sebagai salah satu titik dalam garis bilangan.
Bilangan Rasional
Bilangan rasional adalah suatu bilangan yang dapat dinyatakan sebagai a/b dimana a, b bilangan bulat dan b tidak sama dengan 0 dimana batasan dari bilangan rasional adalah mulai dari selanga (-∞, ∞). Pada bilangan rasional berarti teradapat di dalamnya sudah mencakup bilangan-bilangan lain seperti: bilangan bulat, bilangan asli, bilangan cacah, bilangan prima dan bilangan-bilangan lain yang menjadi subset dari bilangan rasional.
Bilangan Irasional
Bilangan irasional merupakan bilangan riil yang tidak dapat dibagi (hasil baginya tidak pernah berhenti). Dalam hal ini, bilangan irasional tidak bisa dinyatakan sebagai a/b, dengan a dan b sebagai bilangan bulat dan b tidak sama dengan nol. Jadi bilangan irasional bukan merupakan bilangan rasional atau kebalikan dari bilangan rasional.
Bilangan Imajiner
Definisinya, bilangan yang dinyatakan dengan "i" dan di defenisikan sebagai i = -1 atau i = akar -1 . akar -2 adalah bilangan irasional, tetapi akan -2 merupakan bilangan imajiner karena tidak ada bilangan riil jika di kuadratkan menghasilkan -2.
Bilangan Kompleks
Bilangan kompleks adalah bilangan yang berbentuk a+bi dimana a dan b adalah bilangn riil dan i adalah bilangan imajiner.
No comments:
Post a Comment